\(\int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx\) [665]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 99 \[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {\operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},\frac {d (1-\sin (e+f x))}{c+d},\frac {1}{2} (1-\sin (e+f x))\right ) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{f \sqrt {3+3 \sin (e+f x)}} \]

[Out]

-AppellF1(1/2,-n,1,3/2,d*(1-sin(f*x+e))/(c+d),1/2-1/2*sin(f*x+e))*cos(f*x+e)*(c+d*sin(f*x+e))^n/f/(((c+d*sin(f
*x+e))/(c+d))^n)/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.30, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2867, 142, 141} \[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=-\frac {\cos (e+f x) \sqrt {\frac {d (1-\sin (e+f x))}{c+d}} (c+d \sin (e+f x))^{n+1} \operatorname {AppellF1}\left (n+1,\frac {1}{2},1,n+2,\frac {c+d \sin (e+f x)}{c+d},\frac {c+d \sin (e+f x)}{c-d}\right )}{f (n+1) (c-d) (1-\sin (e+f x)) \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[(c + d*Sin[e + f*x])^n/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-((AppellF1[1 + n, 1/2, 1, 2 + n, (c + d*Sin[e + f*x])/(c + d), (c + d*Sin[e + f*x])/(c - d)]*Cos[e + f*x]*Sqr
t[(d*(1 - Sin[e + f*x]))/(c + d)]*(c + d*Sin[e + f*x])^(1 + n))/((c - d)*f*(1 + n)*(1 - Sin[e + f*x])*Sqrt[a +
 a*Sin[e + f*x]]))

Rule 141

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*e - a*f
)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(
b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 142

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*(b*(c/(b*c -
 a*d)) + b*d*(x/(b*c - a*d)))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&
 !IntegerQ[n] && IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x]

Rule 2867

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dis
t[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a + b*x)^(m - 1/2)*((c
+ d*x)^n/Sqrt[a - b*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (a^2 \cos (e+f x)\right ) \text {Subst}\left (\int \frac {(c+d x)^n}{\sqrt {a-a x} (a+a x)} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = \frac {\left (a^2 \cos (e+f x) \sqrt {\frac {d (a-a \sin (e+f x))}{a c+a d}}\right ) \text {Subst}\left (\int \frac {(c+d x)^n}{(a+a x) \sqrt {\frac {a d}{a c+a d}-\frac {a d x}{a c+a d}}} \, dx,x,\sin (e+f x)\right )}{f (a-a \sin (e+f x)) \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {\operatorname {AppellF1}\left (1+n,\frac {1}{2},1,2+n,\frac {c+d \sin (e+f x)}{c+d},\frac {c+d \sin (e+f x)}{c-d}\right ) \cos (e+f x) \sqrt {\frac {d (1-\sin (e+f x))}{c+d}} (c+d \sin (e+f x))^{1+n}}{(c-d) f (1+n) (1-\sin (e+f x)) \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(237\) vs. \(2(99)=198\).

Time = 3.64 (sec) , antiderivative size = 237, normalized size of antiderivative = 2.39 \[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=\frac {\sec (e+f x) \sqrt {1+\sin (e+f x)} (c+d \sin (e+f x))^n \left (\operatorname {AppellF1}\left (1,\frac {1}{2},-n,2,\frac {1}{2} (1+\sin (e+f x)),-\frac {d (1+\sin (e+f x))}{c-d}\right ) \sqrt {2-2 \sin (e+f x)} (1+\sin (e+f x)) \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n}-\frac {4 \operatorname {AppellF1}\left (-\frac {1}{2}-n,-\frac {1}{2},-n,\frac {1}{2}-n,\frac {2}{1+\sin (e+f x)},\frac {-c+d}{d+d \sin (e+f x)}\right ) (1+\sin (e+f x)) \sqrt {1-\frac {2}{1+\sin (e+f x)}} \left (1+\frac {-1+\frac {c}{d}}{1+\sin (e+f x)}\right )^{-n}}{1+2 n}\right )}{4 \sqrt {3} f} \]

[In]

Integrate[(c + d*Sin[e + f*x])^n/Sqrt[3 + 3*Sin[e + f*x]],x]

[Out]

(Sec[e + f*x]*Sqrt[1 + Sin[e + f*x]]*(c + d*Sin[e + f*x])^n*((AppellF1[1, 1/2, -n, 2, (1 + Sin[e + f*x])/2, -(
(d*(1 + Sin[e + f*x]))/(c - d))]*Sqrt[2 - 2*Sin[e + f*x]]*(1 + Sin[e + f*x]))/((c + d*Sin[e + f*x])/(c - d))^n
 - (4*AppellF1[-1/2 - n, -1/2, -n, 1/2 - n, 2/(1 + Sin[e + f*x]), (-c + d)/(d + d*Sin[e + f*x])]*(1 + Sin[e +
f*x])*Sqrt[1 - 2/(1 + Sin[e + f*x])])/((1 + 2*n)*(1 + (-1 + c/d)/(1 + Sin[e + f*x]))^n)))/(4*Sqrt[3]*f)

Maple [F]

\[\int \frac {\left (c +d \sin \left (f x +e \right )\right )^{n}}{\sqrt {a +a \sin \left (f x +e \right )}}d x\]

[In]

int((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x)

[Out]

int((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x)

Fricas [F]

\[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((d*sin(f*x + e) + c)^n/sqrt(a*sin(f*x + e) + a), x)

Sympy [F]

\[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int \frac {\left (c + d \sin {\left (e + f x \right )}\right )^{n}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \]

[In]

integrate((c+d*sin(f*x+e))**n/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral((c + d*sin(e + f*x))**n/sqrt(a*(sin(e + f*x) + 1)), x)

Maxima [F]

\[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^n/sqrt(a*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^n/sqrt(a*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d \sin (e+f x))^n}{\sqrt {3+3 \sin (e+f x)}} \, dx=\int \frac {{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int((c + d*sin(e + f*x))^n/(a + a*sin(e + f*x))^(1/2),x)

[Out]

int((c + d*sin(e + f*x))^n/(a + a*sin(e + f*x))^(1/2), x)